

Name_

Rocks & Minerals

Unit Outline

Day	Lesson Topic
One	"Introduction to Rocks & Minerals" Experiment: "Looking at Mock Rocks"
Two	"The Scientific Method"
Three	"All About the Rock Cycle"
Four	"Weathering & Erosion" Experiment: "Effects of Chemical Weathering"
Five	"Minerals"
Six	"Mohs Scale of Mineral Hardness" Activity: "Exploring Birthstones"
Seven	Review of Unit (includes a review game)
Eight	Unit Test

Vocabulary

Crystal	Solid form of material; identified by its shape or pattern
Depth	The <mark>thickness</mark> of an object
Geologist	A person who <mark>studies</mark> the <mark>Earth and</mark> Earth's materials
Geology	The study of Earth's history and structure
Igneous Rock	Rock formed from magma
Metamorphic Rock	Rock that forms when heat and pressure change an igneous or sedimentary rock
Mineral	Solid matter from Earth that is non-living
Moh's Scale of Harness	Numerical scale that is used to identify and rank minerals based on their hardness (1 = softest; 10 = hardest)
Properties	Observations: color, shape, size, texture, and mass
Rock	An <mark>Earth material</mark> that is made up of minerals
Scientific Method	A method of procedure in which a question is asked/ problem is identified, research is gathered, and hypotheses are formulated and tested
Scratch Test	Determines how hard a mineral is
Sedimentary Rock	A rock that is made up of sediments that are pressed together
Weathering	The <mark>effect of water, temperature, and wind</mark> on the landscape

Introduction to Rocks & Minerals

- Rocks are made up of materials called minerals.
- Rocks have been on Earth for over four billion years.
- The rocks you see today could have once been part of a cave, mountain, or even stepped on by a dinosaur.
- Since all rocks are different, they are grouped into three categories: igneous, sedimentary, and metamorphic.
 - Igneous: a rock that is formed from magma (lava). When a volcano erupts, the lava is extremely hot and is in liquid form. Once the lava cools down, when it reaches the surface of the Earth or a place within the Earth's crust, it hardens. This hard rock is called igneous. Examples include basalt and granite.
 - Sedimentary: a rock that is formed from sediment (particles carried by water or wind and that settle at the bottom of a body of water). Over the years, sediment gets pressed together and eventually becomes a rock. Examples include limestone, shale, and sandstone.
 - Metamorphic: a rock that is formed by extreme heat and pressure. These rocks are usually found within the Earth's crust. Most times, metamorphic rocks have changed from one type to the other. For example, shale can change into slate. Other examples include marble and schist.
- The study of Earth's history and structure is called "geology" and a person who studies this is called a "geologist."

Igneous Rocks (IG Nee Us)

- Igneous rocks are the oldest type of rock.
- "Igneous" is Greek for "Fire"
- Deep inside the Earth, the temperature is very hot. The minerals that are found there are in **liquid form**, called **magma**.
- As the magma **pushes upward towards the surface** of the Earth, it begins to cool.
- There are two types of igneous rocks: extrusive and intrusive
 - Extrusive: rocks that cool near or on the Earth's surface
 - Intrusive: rocks that cool deep below Earth's surface
- Igneous rocks have very distinct characteristics:
 - > **Do not** contain fossils.
 - Rarely or never react with acid.
 - > **Do not** have layering.
 - > Made up of two or more minerals, usually crystals of different sizes.
 - Are light or dark colored.

Name	Description	Usage
Granite	<mark>hard</mark> ; pink, black, and green speckles	cabinets; monuments; tiles
Pumice	<mark>rough surface</mark> ; has holes; very light; only rock that <mark>floats on</mark> <mark>water</mark>	cleaning grills; removing calluses off feet
Obsidian	<mark>smooth</mark> ; dark black; forms from <mark>quickly</mark> cooling lava	blades on surgical instruments; arrowheads; mirrors

Guess the Rock!

Look back at the characteristics. Write the name of the rock on the line.

<u>Obsidian</u>

mage by Khruner on Wikimedia Commo

Pumice

Granite

Sedimentary Rocks

- Sedimentary rocks are formed from sediment.
- Earth's surface is constantly being eroded by weathering agents (wind, water, ice). Erosion causes rocks to break into smaller pieces.
- Tiny rock pieces can become pebbles, gravel, sand, or clay.
- When these tiny pieces fall into streams, they settle at the bottom.
 Eventually more pieces settle and pile up.
- Lithification is the transformation of sediment into a rock or stone.
- Sedimentary rocks have very distinct characteristics:
 - Classified by their texture and composition (make up).
 - Contain fossils.
 - May react with acid.
 - May have flat or curved layers.
 - Made up of pieces that have been pressed together.
 - Can be a variety of color.
 - May contain cross bedding, mud cracks, worm burrows, or raindrop impressions.

Name	Description	Usage
Limestone	made of calcium carbonate (white or colorless powder); coloring depends on the minerals; can also be made up of fossils; found in wet areas	paint thickener; roofing tiles; food ingredient for animals, especially chickens
Shale	found in limestone; forms in muddy areas, such as the ocean floor or rivers; very thick; usually gray	bricks; cement; concrete; ceramics
Sandstone	Made of <mark>sand grains</mark> ; forms from the <mark>sand</mark> found on the beach, in riverheads, or sand dunes	glassware; clocks; books; architectural pillars

7

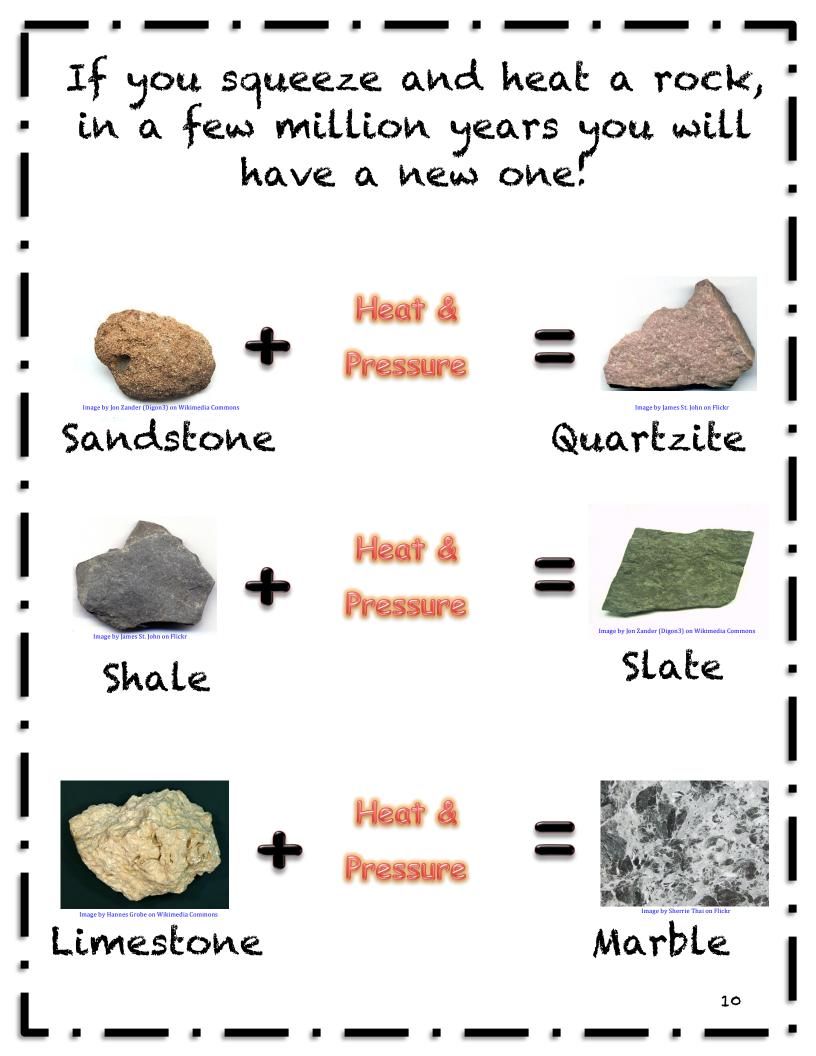
Guess the Rock!

Look back at the characteristics. Write the name of the rock on the line.

Image by James St. John on Flick

Image by Hannes Grobe on Wikimedia Co

Shale


Limestone

Sandstone

Metamorphic Rocks

- Metamorphic rocks are formed deep in the Earth, where the temperature is very hot and the pressure is intense.
- A chemical change can turn one rock into another.
- "Metamorphic" comes from two Greek words meaning "change" and "from" ("changing form")
- It takes millions of years for a rock to change its form.
- Metamorphic rocks have very distinct characteristics:
 - Classified by their texture and composition (make up).
 - Contain fossils.
 - May react with acid.
 - Have alternating bands of light and dark minerals.
 - May contain only one mineral.
 - Have a visible layer of crystal.
 - Rarely have openings or pores.
 - May contain a curved foliation (parallel rock lines).

Name	Description	Usage
Quartzite	very hard; white or gray	beads; landscape decorations
Slate	fine-grained; can be <mark>split</mark> <mark>into thin layers</mark>	roofs; sinks
Marble	Soft; contains calcium carbonate and crystals.	tiles; clocks; hot plates; statues

Experiment: Looking at Mock Rocks

Name

Directions: Use the tools provided by your teacher to break apart your "mock rock" (fake rock). Discuss your observations with your group. Then, fill in the chart below.

Rock's Size	Rock's Color	What Was Inside	Other Comments

Directions: On the left side, draw a picture of your mock rock before you broke it apart. On the right side, draw a picture of your mock rock after your broke it apart.

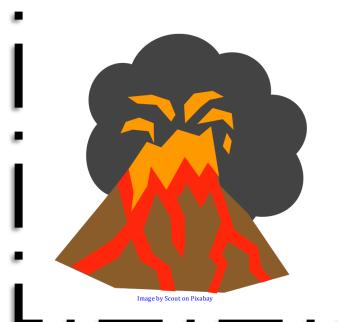
11

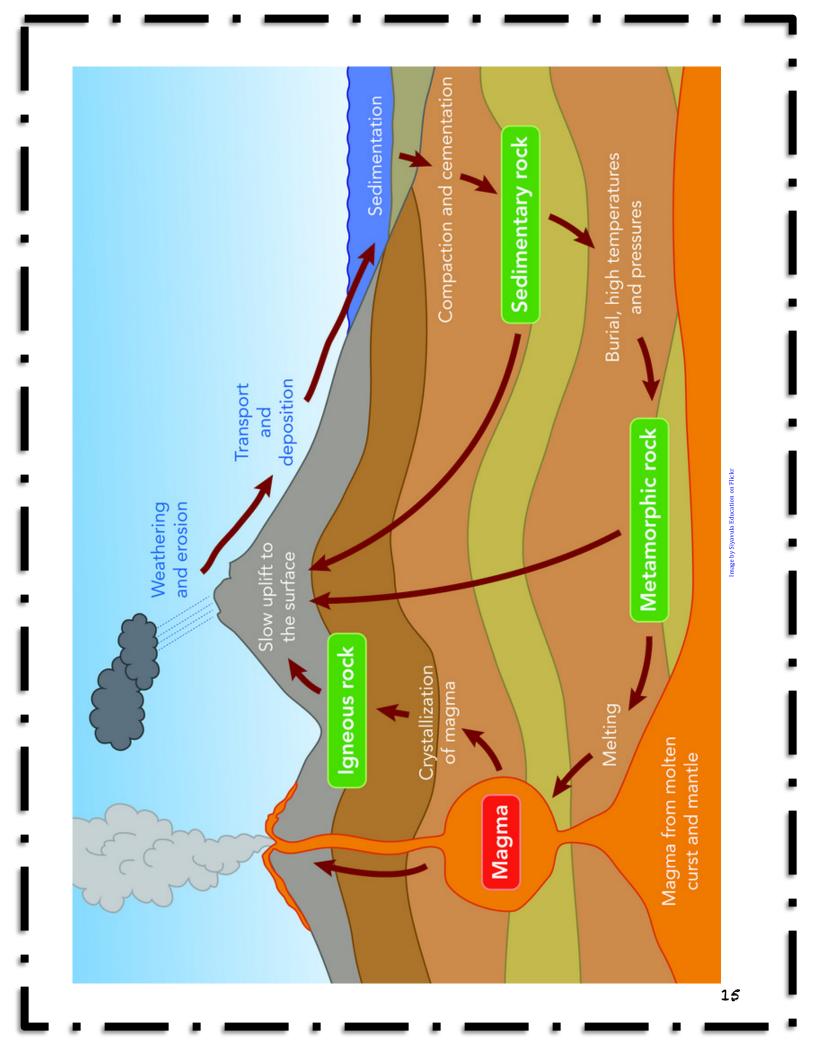
The Scientific Method

- The scientific method is a method of procedure in which a question is asked/ problem is identified, research is gathered, and hypotheses are formulated and tested,
- The are six steps in the scientific method:
 - Step 1: Ask a question/ Make an observation.
 - Step 2: Gather information.
 - Step 3: Create a hypothesis.
 - Step 4: Make predictions.
 - Step 5: Perform Tests and/ or experiments.
 - Step 6: State your findings/ conclusions.

Step 1	Step 2	Step 3
What do you <mark>wonder</mark> about? What do you <mark>question</mark> ?	What <mark>information do I</mark> need to conduct my research?	What <mark>do you think the answer to your question is?</mark> What is the reason for your research/observation?
Step 4 What are the <mark>if/then</mark> statements that explain your hypothesis?	Step 5 How will you test your predictions? If your hypothesis is not right, that is okay!	Step 6 What did your tests/ experiments show? Was your hypothesis confirmed?
		12

<u>Activity:</u> Label the Scientific Method!


Directions: Read each statement and determine which step of the scientific method it is. Write the step on the line.


- James knows chalk is a soft rock and that lemon juice and vinegar are very acidic. He fills up two cups and puts lemon juice in one and vinegar in another. He puts a piece of chalk inside each cup. He waits a day and records his results. STEP 5
- James wants to know if a piece of chalk will dissolve quicker in lemon juice or in vinegar. He goes on the Internet to search for experiments that have been done on his question. He makes a list of the items he will need to conduct his own experiment. STEP 2
- James predicts that the chalk in the cup of vinegar will dissolve quicker than the chalk in the lemon juice. STEP 3
- James writes a paper explaining his experiment. He writes down his hypothesis, the steps he did, and what the results of his experiment were. He confirms his hypothesis. STEP 6
- At school, James learns that chalk is a type of soft rock. He wonders what would happen if he put a piece of chalk in a cup of lemon juice. STEP 1
- James determines that if the chalk dissolves quicker in the vinegar than in the lemon juice, the vinegar must be stronger or more acidic. STEP 4

The Rock Cycle

- Rocks are constantly being recycled.
- Rocks that were around a million years ago are undergoing a change and are becoming new rocks.
- We begin our journey through the rock cycle in the **Earth's mantle**.
 - > The Earth's mantle is very hot.
 - Magma pushes up towards Earth's crust.
 - Some of the magma goes into volcano cracks; the rest goes through a volcano as lava.
- Some of the igneous rocks roll down mountains and end up in the ocean.
 - > As the rocks roll, they **break apart**. These pieces form sediment.
 - As the sediment gathers up (presses together and cements), sedimentary rocks are created.
- Some of the sedimentary rocks are exposed to heat and pressure. They change into metamorphic rocks.
 - When a metamorphic rock gets buried, it gets hotter and eventually melts.
 - Once again, the metamorphic rock becomes magma and the cycle starts all over again.

Weathering & Erosion

- Erosion is a very important (key) part of the rock cycle.
 - > Erosion has helped to form many of Earth's amazing landscapes.
 - Erosion is the result of weathering. Weathering is the effect of water, temperature, and wind on the landscape.
 - One example of a landscape that is the result of erosion is the Grand Canyon.
- Erosion is **mostly caused by water**.
 - Some rocks are very sensitive to acid. When acid rain falls, these rocks dissolve.
 - When exposed to rain, marble and limestone weather.
 - Monsoons, heavy rainstorms, cause flooding. Flooding plays a role in weathering rocks.
 - Cliffs on the ocean's coast also weather because of the constant pounding from waves.
 - When water gets in between the cracks of a rock, it causes it to expand and eventually split.
 - Denudation: when cracks in a rock fill up with water during a thaw period, more water goes deeper into the rock. When the freeze period comes, the rock will split apart.
- Weathering can also be the result of chemical reactions.
 - Chemical weathering occurs in all rocks, but more frequently in smaller rocks.
 - When a rock undergoes chemical weathering, the minerals in the rock are changed chemically by air, sunlight, or acid rain.

The Grand Canvon(United States of America)

16

Physical Weathering vs. Chemical Weathering

Physical Weathering	Chemical Weathering
Rocks are affected by:	Rocks are affected by:
Being <mark>hit by material</mark>	Oxidation (rusting)
Plants <mark>growing through cracks</mark> or Water <mark>freezing in the cracks</mark>	Hydrolysis and hydration (addition of water)

Take a look at the pictures of carved stone faces below. Write your observations. How do you think this was caused?

Image by Slick on Wikimedia Comm

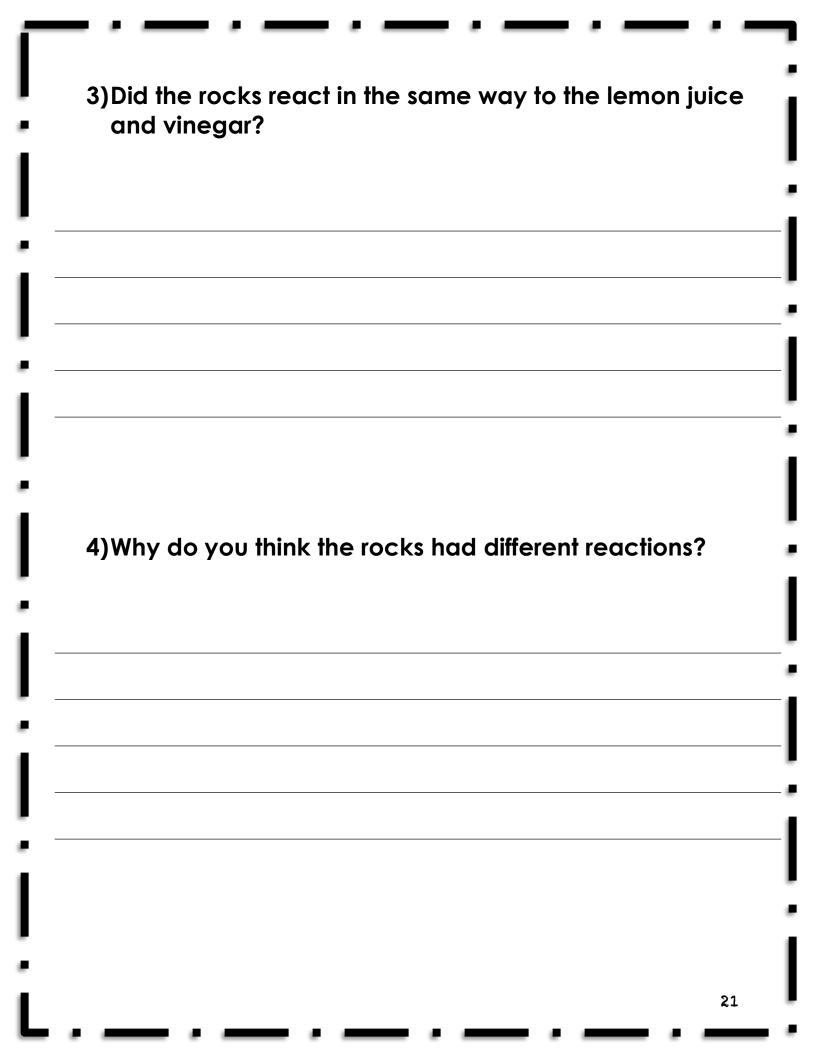
Image by Nino Barbieri on Wikimedia

Experiment: Effects of Chemical Weathering

Names

Directions: With your group, make predictions about what you think will happen to each rock when it is placed in the lemon juice and vinegar.

	Limestone	Calcite	Chalk	Quartz
Lemon Juice				
Vinegar				


Experiment: Effects of Chemical Weathering

Names

Directions: With your group, examine each rock in its liquid. Write your observations in the box.

	Limestone	Calcite	Chalk	Quartz
Lemon Juice				
Vinegar				
-				

Questions to think about:	
1)What happens when you put lemon juice on each roc	k?
2)What happens when you put vinegar on each rock?	
2) what happens when you put whegat on each lock:	
	20

What are Minerals?

- Minerals are the building blocks of rocks.
- Minerals are inorganic (nonliving).
- Most rocks are made up of minerals.
 - Coal is an example of a rock that is not made up of minerals. Coal is formed from decayed plants and animals.
- Minerals are found in nature (dirt, water, rocks).
- Minerals are natural and not manmade.
- Minerals are made up of chemical substances.
 - Some minerals contain only one substance (such as silver or gold)
 - Some minerals contain more than one substance (such as quartzite and calcite)
- Minerals have the same chemical makeup and are usually solid crystals.
- The most important component of minerals is oxygen.

The mineral dioptase.

How Do We Identify Minerals?

Colors	Minerals come in a variety of colors
Luster	The way the mineral <mark>reflects light</mark>
Streak	The color that is made by the mineral when it is <mark>rubbed against a</mark> <mark>hard surface</mark>
Hardness	How easy the mineral scratches
Gravity	The <mark>weight</mark> of the mineral

Míneral Identífication Kít

Mohs Scale of Mineral Hardness

- Developed in 1822 by Friedrich Mohs.
- Mohs was a German mineralogist—someone who studies minerals.
- Mohs Scale of Mineral Hardness measures the hardness of minerals using a 1-10 scale rating, with 1 being the softest and 10 being the hardest.
- The scale uses common minerals to represent the numbers 1-10
- Today, geologists and mineralogists use Mohs Scale of Mineral Hardness.

Friedrich Mohs

Number	Mineral	Picture
1	Talc	Image by Didier Descouens on Wikimedia Commons
2	Gypsum	Image by Robert Lavinsky on Wikimedia Commons
3	Calcite	Image by Parent Gery on Wikimedia Commons
4	Fluorite	Image by Parent Géry on Wikimedia Commons
5	Apatite	Image by Parent Gery on Wikimedia Commons
6	Feldspar	Image by Robert Lavinsky on Wikimedia Commons
7	Quartz	Image by JJ Harrison on Wikimedia Commons
8	Topaz	Image by Eurico Zimbres and Tom Epaminondas on Wikimedia Common:
9	Corundum	Image by Robert Lavinsky on Wikimedia Commons
10	Diamond	Image by George Hodan on Public Domain Pictures

Birthstones

January

Garnet

February

Amethyst

Aquamarine

Diamond

Emerald

Pearl

Ruby

Peridot

Sapphire

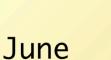
Topaz

Turquiose

March

April

July

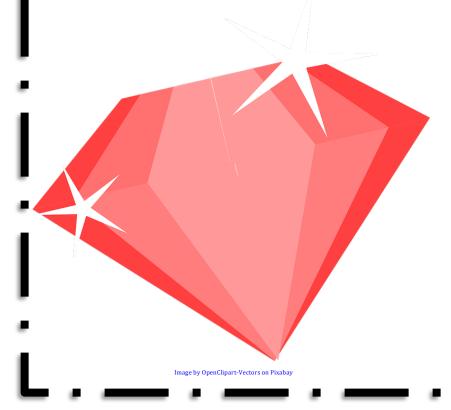

August

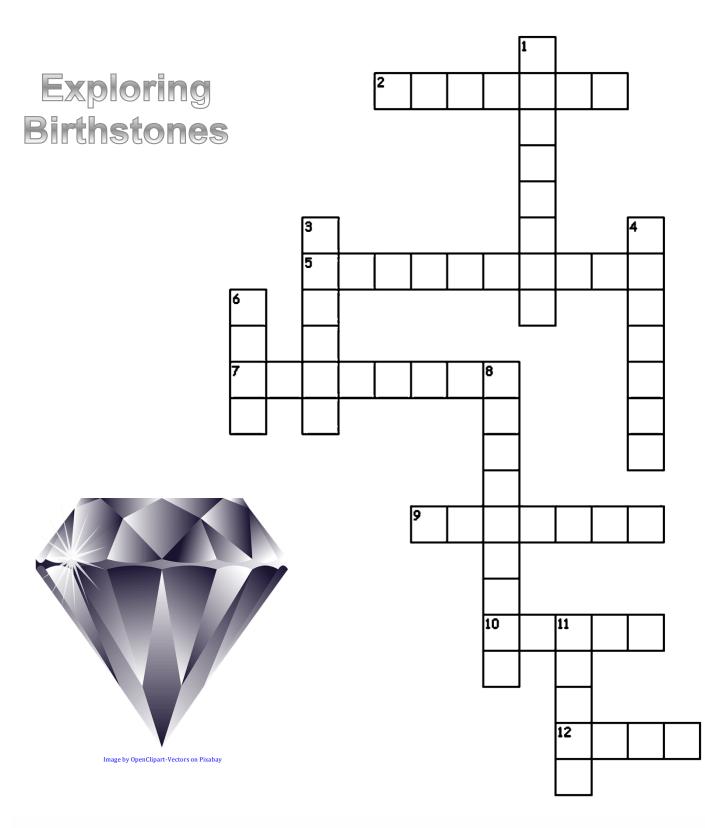
September

October

November

December




Activity:

Exploring Birthstones

Directions: Have you ever wondered what your birthstone is? Does your birthstone represent wisdom or strength? Where is birthstone found? Go to the website below to read about your birthstone and the other birthstones. After you finish reading, complete the crossword puzzle on the next page.

https://www.perrysjewelry.com/education/birthstone-facts-legends

Across

- 2. May's birthstone that was mined by the ancient Egyptians, Indians, and Incans
- 5. March's birthstone that can be found throughout Africa
- 7. February's birthstone which represents royalty
- 9. number ten on Mohs Scale of Mineral Hardness and also April's birthstone
- 10. November's birthstone which is worn by people in India to insure long life, beauty, and intelligence 12. July's birthstone whose name comes from the Latin word "rube" or "red"

Down

- 1. September's birthstone that can be found in any color except red and orange-pink
- 3. January's birthstone which was once believed to heal diseases related to blood flow
- 4. August's green birthstone that's been found in meteorites
- 6. October's birthstone that has a high percentage of water
- 8. December's birthstone which was one called "blue zoisite" but had its name changed by Tiffany & Co.
- 11. June's birthstone that is found in an oyster's shell